Modeling Cognition with Probabilistic Programs: Representations and Algorithms
نویسندگان
چکیده
This thesis develops probabilistic programming as a productive metaphor for understanding cognition, both with respect to mental representations and the manipulation of such representations. In the first half of the thesis, I demonstrate the representational power of probabilistic programs in the domains of concept learning and social reasoning. I provide examples of richly structured concepts, defined in terms of systems of relations, subparts, and recursive embeddings, that are naturally expressed as programs and show initial experimental evidence that they match human generalization patterns. I then proceed to models of reasoning about reasoning, a domain where the expressive power of probabilistic programs is necessary to formalize our intuitive domain understanding due to the fact that, unlike previous formalisms, probabilistic programs allow conditioning to be represented in a model, not just applied to a model. I illustrate this insight with programs that model nested reasoning in game theory, artificial intelligence, and linguistics. In the second half, I develop three inference algorithms with the dual intent of showing how to efficiently compute the marginal distributions defined by probabilistic programs, and providing building blocks for process-level accounts of human cognition. First, I describe a Dynamic Programming algorithm for computing the marginal distribution of discrete probabilistic programs by compiling to systems of equations and show that it can make inference in models of “reasoning about reasoning” tractable by merging and reusing subcomputations. Second, I introduce the setting of amortized inference and show how learning inverse models lets us leverage
منابع مشابه
Probability, programs, and the mind: Building structured Bayesian models of cognition
Human thought is remarkably flexible: we can think about infinitely many different situations despite uncertainty and novelty. Probabilistic models of cognition (Chater, Tenenbaum, & Yuille, 2006) have been successful at explaining a wide variety of learning and reasoning under uncertainty. They have borrowed tools from statistics and machine learning to explain phenomena from perception (Yuill...
متن کاملProbabilistic models of cognition: exploring representations and inductive biases.
Cognitive science aims to reverse-engineer the mind, and many of the engineering challenges the mind faces involve induction. The probabilistic approach to modeling cognition begins by identifying ideal solutions to these inductive problems. Mental processes are then modeled using algorithms for approximating these solutions, and neural processes are viewed as mechanisms for implementing these ...
متن کاملThe effect of social cognitive representation on the mental property of the body: Evidence based on rubber hand illusion
Mental representations are to be considered as the most advanced aspects of human cognition and in addition to their own physical representations, representations of social cognition of others can also affect the mental experience of each person's ownership of their body. Accordingly, the present research as a quasi-experimental study based on repeated measures, was conducted in order to invest...
متن کاملProbabilistic models of cognition 1 Running head: PROBABILISTIC MODELS OF COGNITION Probabilistic models of cognition: Exploring the laws of thought
Cognitive science aims to reverse-engineer the mind, and many of the engineering challenges the mind faces involve inductive inference. The probabilistic approach to modeling cognition begins with the goal of understanding these inductive problems in computational terms: what makes them difficult, and how they can be solved in principle. Mental processes are then modeled using algorithms for ap...
متن کاملApplication of Probabilistic Clustering Algorithms to Determine Mineralization Areas in Regional-Scale Exploration Studies
In this work, we aim to identify the mineralization areas for the next exploration phases. Thus, the probabilistic clustering algorithms due to the use of appropriate measures, the possibility of working with datasets with missing values, and the lack of trapping in local optimal are used to determine the multi-element geochemical anomalies. Four probabilistic clustering algorithms, namely PHC,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015